Selective attention modulates high-frequency activity in the face-processing network
Cortex, a journal devoted to the study of the nervous and behavior
Musch K
Hamame CM
Perrone-Bertolotti M
Kahane P
Engel AK
Lachaux JP
Schneider TR

Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipitotemporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50e150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole face-processing network, and that these effects are reflected in frequency-specific changes in the gamma band.