Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus
Proc Natl Acad USA
Desmurget M
Richard N
Harquel S
Baraduc P
Szathmari A
Mottolese C
Sirigu A

Complex motor responses are often thought to result from the combination of elemental movements represented at different neural sites. However, in monkeys, evidence indicates that some behaviors with critical ethological value, such as self-feeding, are represented as motor primitives in the precentral gyrus (PrG). In humans, such primitives have not yet been described. This could reflect well-known interspecies differences in the organization of sensorimotor regions (including PrG) or the difficulty of identifying complex neural representations in peroperative settings. To settle this alternative, we focused on the neural bases of hand/mouth synergies, a prominent example of human behavior with high ethological value. By recording motor-and somatosensory-evoked potentials in the PrG of patients undergoing brain surgery (2-60 y), we show that two complex nested neural representations can mediate hand/mouth actions within this structure: (i) a motor representation, resembling self-feeding, where electrical stimulation causes the closing hand to approach the opening mouth, and (ii) a motor-sensory representation, likely associated with perioral exploration, where cross-signal integration is accomplished at a cortical site that generates hand/arm actions while receiving mouth sensory inputs. The first finding extends to humans' previous observations in monkeys. The second provides evidence that complex neural representations also exist for perioral exploration, a finely tuned skill requiring the combination of motor and sensory signals within a common control loop. These representations likely underlie the ability of human children and newborns to accurately produce coordinated hand/mouth movements, in an otherwise general context of motor immaturity.